A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation

نویسندگان

چکیده

In this study, an efficient semi-discrete method based on the two-dimensional Legendre wavelets (2D LWs) is developed to provide approximate solutions for nonlinear variable-order time fractional (2D) Schrödinger equation. First, derivative involved in considered problem approximated via finite difference technique. Then, by help of scheme and theta-weighted method, a recursive algorithm derived under examination. After that, real functions available imaginary parts unknown solution are expanded 2D LWs. Finally, applying operational matrices derivative, transformed linear system algebraic equations each step which can simply be solved. In proposed acceptable achieved employing only small number basis functions. To illustrate applicability, validity accuracy wavelet some numerical test examples solved using suggested method. The results reveal that established LWs very easy implement, appropriate accurate solving model.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler/Quasi-wavelet method for the variable order fractional advection-diffusion equation with a nonlinear source term

Abstract: New numerical techniques are presented for the solution of a class of the variable order fractional advection-diffusion equation with a nonlinear source term on one-dimensional finite domain. Quasiwavelet and double quasi-wavelet are used for the spatial discretization. For the time stepping, Euler method is considered. We also tested the method proposed on several problems with very ...

متن کامل

Implicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation

In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

Model order reduction for nonlinear Schrödinger equation

We apply the proper orthogonal decomposition (POD) to the nonlinear Schrödinger (NLS) equation to derive a reduced order model. The NLS equation is discretized in space by finite differences and is solved in time by structure preserving symplectic midpoint rule. A priori error estimates are derived for the POD reduced dynamical system. Numerical results for one and two dimensional NLS equations...

متن کامل

An exponential time differencing method for the nonlinear Schrödinger equation

The spectral methods offer very high spatial resolution for a wide range of nonlinear wave equations, so, for the best computational efficiency, it should be desirable to use also high order methods in time but without very strict restrictions on the step size by reason of numerical stability. In this paper we study the exponential time differencing fourth-order Runge-Kutta (ETDRK4) method; thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S

سال: 2021

ISSN: ['1937-1632', '1937-1179']

DOI: https://doi.org/10.3934/dcdss.2020295